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Abstract
Climate change-related disasters have drawn
increased attention to the impact of air pollu-
tion on health. 122 children ages 9–11 years old,
M(SD) = 9.91(.56), participated. Levels of partic-
ulate matter (PM2.5) near participants’ homes
were obtained from the Environmental Protection
Agency. Cytokines were assayed from 100 child
serum samples: IL-6, IL-8, IL-10, and TNFα. Auto-
nomic physiology was indexed by pre-ejection
period (PEP), respiratory sinus arrhythmia (RSA),
cardiac autonomic regulation (CAR), and cardiac
autonomic balance (CAB). IL-6 was positively
related to daily PM2.5 (r = .26, p = .009). IL-8 was
negatively associated with monthly PM2.5 (r = −.23,
p = .02). PEP was positively related to daily (r = .29,
p = .001) and monthly PM2.5 (r = .18, p = .044).
CAR was negatively associated with daily PM2.5 (r =
−.29, p = .001). IL-10, TNFα, RSA, and CAB were not
associated with PM2.5. Air pollution may increase
risk of inflammation in children.
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1 INTRODUCTION

Climate change, increasing prevalence of wildfires, and environmental justice efforts have
drawn increased attention to the impact of air pollution on children’s health. Global climate
change has led to worsening of overall air quality and episodes of high air pollution due to
wildfires (Kan et al., 2012; Liu et al., 2016). Furthermore, the COVID-19 pandemic has exac-
erbated the impacts of air pollution on human health, as one study of 3,089 counties in the
United States found that counties with higher air pollution had higher COVID-19 mortality
rates, adjusting for confounders (Wu et al., 2020). Children in particular are at increased
risk of negative health effects due to air pollution, although they have only recently been
studied in relation to these environmental phenomena (Currie & Deschênes, 2016; Lef-
fers, 2021; Trentacosta & Mulligan, 2020). Biologically, children’s developing organs and
systems are highly susceptible to the effects of air pollution (Salvi, 2007). Children’s vulner-
ability and under-representation in studies of air pollution motivated the current study. We
examined associations between air pollution and children’s physiology, including periph-
eral inflammation and autonomic nervous system (ANS) physiology, as both have links to
lifelong health outcomes.

1.1 Air pollution and children’s health

The impact of environmental contaminants, such as air pollution, on children’s devel-
opment has become a concern of developmental researchers (Trentacosta et al., 2016).
Burgeoning research and calls to action aim to elucidate how contaminants may impact
later development and long-term health (Trentacosta & Mulligan, 2020). In adults, air pol-
lution exposure has been linked to an increased risk of physical health problems with
inflammatory underpinnings, such as asthma and heart disease (Brunekeef & Holgate,
2002). Children may be especially susceptible to the effects of air pollution, given that,
compared to adults, they have a higher intake of contaminants and greater lung surface
area relative to their body weight (Salvi, 2007; Schwartz, 2004). Air pollution consists of
pollutants and particulates. One index of air pollution is fine particulate matter (PM2.5),
which reflects fine particles in the air that are 2.5 microns or less in width. These fine
particles which are emitted into the air can penetrate into the lungs and pass into the
bloodstream, subsequently affecting lung and heart function (Larr & Neidell, 2016). In
addition, exposure to pollutants may have a greater influence on lung function and res-
piratory health in children, because their lungs are not yet fully developed (Esposito et al.,
2014).

Previous studies with children have shown significant associations between ambient
air pollution and allergic sensitization, respiratory symptoms, ultra-structural cellular
changes to children’s airways, and lung growth (for a review, see Salvi, 2007). In a large
study of over 4,000 children during the first 4 years of life, elevated traffic-related pol-
lution was associated with higher risk of physician-diagnosed asthma and self-reported
respiratory illness (ear/nose/throat infections, flu, serious colds; Brauer et al., 2007). In a
subgroup of the study (n = 713), pollution was associated with an increased prevalence of
immunoglobulin E-mediated sensitization to common food allergens (Brauer et al., 2007).
In another study, exposure to sulphur dioxide from an oil refinery was associated with
reduced lung function and increased airway inflammation in children aged 8–14 years old
(Barbone et al., 2019). A large cohort in the UK found that increases in monthly ozone levels
were associated with increases in concurrent respiratory treatments in children 2–6 years of
age (Beatty & Shimshack, 2014). In youth enrolled in the California Children’s Health Study
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(N = 6,424), greater exposure to wildfire smoke was associated with an increase in eye and
respiratory symptoms, medication use, and physician visits (Künzli et al., 2006). The effects
of air pollution on children are thought to depend on developmental timing. That is, sim-
ilar levels of pollution may have a greater effect earlier in development compared to later
(Larr & Neidell, 2016).

Effects of air pollution can arise from pre- and perinatal exposure, with greater levels of
air pollution being associated with outcomes including intrauterine mortality, increased
preterm birth, and lower birth weights (Bobak et al., 2001; Pereira et al. 1998; Xu et al.,
1995). A large birth cohort study of over 5,000 births demonstrated increased air pollu-
tant exposure was associated with lower birth weight, controlling for a variety of social and
economic factors (Bobak et al., 2001). Recently, a systematic review of 58 studies, with a
total of over 32.7 million births, found an association of air pollution (PM2.5 or ozone) and
climate change (heat exposure) with adverse birth outcomes such as preterm birth, low
birth weight, and stillbirth (Bekkar et al., 2020). In a large prospective cohort study, infants
who lived closer to a major roadway or had higher prenatal exposure to PM2.5 and ozone
were at increased likelihood for developmental delays (Ha et al., 2019). This work illustrates
the multigenerational process in which environmental contaminants impact child health
outcomes (Trentacosta et al., 2016).

1.2 Air pollution, oxidative stress, and inflammation in children

The biological mechanisms by which air pollution impacts children’s health are actively
investigated and thought to involve oxidative stress, inflammation, and tissue remodeling
(Esposito et al., 2014; Schraufnagel et al., 2019; Schwartz, 2004). Oxidative stress involves
an imbalance between reactive oxygen species and the mechanisms that detoxify and
repair damage of reactive intermediates, resulting in the breakdown of protective antioxi-
dant mechanisms (Madl et al., 2014). This process also entails pro-inflammatory signaling,
setting off a cascade that may affect multiple organ systems (Schraufnagel et al., 2019).
Nanoparticles, while much smaller than PM2.5, give rise to inflammation and oxidative
stress (Madl et al., 2014). In general, air pollution has been linked to increased inflamma-
tion in the body, in both adults and children (Schwartz, 2004), though the specific biological
mechanisms by which air pollution increases inflammation are still being uncovered. One
mechanism implicates endotoxin, as studies have documented the presence of endotoxin
in PM2.5 particulate matter (Heinrich et al., 2003; Xin et al., 2021). Endotoxin is a bacte-
rial product present in our environment and known to be a strong modulator of immune
responses, inducing increased production of cytokines such as interleukin-6 (IL-6), tumor
necrosis factor alpha (TNFα), and others (Cavaillon, 2018). One study that exposed human
cell lines in vitro to PM2.5 samples collected from different locations with varying traffic
densities in China has shown that in vitro cytokine production by cells was closely cor-
related with endotoxin content in the PM2.5 samples (Xin et al., 2021). Consistent with
this finding, another study cultured human monocytic cell lines with PM2.5 samples from
different sites and different seasons of the year in Mexico City and found higher lev-
els of in vitro cytokine production for samples from the rainy-warm season, which had
higher endotoxin content (Manzano-León et al., 2016). More research is needed to exam-
ine links between endotoxin content and in vivo production of cytokines and inflammatory
responses in humans. In addition to this mechanism, greater exposure to traffic-related air
pollutants has been found to be associated with airway inflammation and airway tissue
remodeling, indicative of oxidative stress (Berhane et al., 2011; Brown et al., 2012; Esposito
et al., 2014).
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Markers of systemic inflammation such as IL-6 or C-reactive protein (CRP) have been
posited as useful early biomarkers of health in children (Bernard et al., 2019; Doom et al.,
2021; Lourenço et al., 2014) and are increasingly being examined in association with air
pollution exposure. Some research has begun examining the association between air pol-
lution exposure and inflammation in children. Pilot studies in Mexico City found that
children aged 5–7 years old (N = 35) with exposure to urban air pollution showed higher
concentrations of IL-6, reduced levels of neutrophils, and increased levels of monocytes
than children in cities with lower pollution (Calderón-Garcidueñas et al., 2013). An ear-
lier study found that 8-year-old children in Mexico City (N = 52) exposed to higher PM2.5
levels had significant increases in inflammatory markers and vasoconstrictors such as
TNFα, prostaglandin E2, CRP, interleukin-1β, and endothelin-1, compared to those from a
city with low levels of pollutants (Calderón-Garcidueñas et al., 2008). In addition, cumu-
lative levels of PM2.5 were negatively associated with white blood cell count in highly
exposed children (Calderón-Garcidueñas et al., 2008). For these children, systemic inflam-
mation has been linked to immunodysregulation, oxidative stress, neuroinflammation,
small blood vessel pathology, along with the early signs of Alzheimer’s and Parkinson’s dis-
eases (Calderón-Garcidueñas et al., 2015). In a study in China, school children who were
chronically exposed to pollution had decreased B lymphocyte count and immunoglobu-
lin C3 and C4 levels, and increased monocyte count and CD8+ lymphocyte proportion
compared to control children (Li et al., 2019). In a recent study in California, children who
were exposed to a nearby wildfire that was associated with increases in PM2.5 exhibited
a significant reduction in pro-inflammatory Th1 cells, and a trend towards more wheezing
episodes and more asthma exacerbations in those with prior asthma, compared to children
exposed to a more limited, controlled fire (Prunicki et al., 2019). Together, these findings
suggest that air pollution may impact children’s immune functioning. In addition, there are
lasting effects of early-life pollutant exposure on inflammatory markers. A cohort study (N
= 670) of 8-year-old children indicated that increases in exposure to nitrogen dioxide (NO2)
during infancy was associated with a 13.6% increase in IL-6 levels, and a 27.8% increase in
interleukin-10 (IL-10) in children with asthma (Gruzieva et al., 2017).

1.3 Air pollution and autonomic physiology

Greater exposure to air pollutants is also theorized to lead to autonomic imbalance, charac-
terized by reduced parasympathetic nervous system (PNS) and/or increased sympathetic
nervous system (SNS) activity at rest (Brook & Rajagopalan, 2021). Physiological profiles
of autonomic imbalance are associated with increased risk for disease (e.g., cardiovas-
cular disease; Thayer et al., 2010). This is one potential mechanism that might explain
the robust associations between air pollution and cardiovascular morbidity and mortal-
ity (Rajagopalan et al., 2018). Several pathways have been proposed to explain how air
pollution might influence autonomic activity. At the acute level, pollutants may augment
autonomic activity by activating irritant receptors in the lungs, which has been found to
lead to increased sympathetic activity in rodents (Rajagopalan et al., 2018). Pollutants can
also have direct effects on cardiac ion channels, impacting subsequent cardiac activity
(Rajagopalan et al., 2018). At a chronic level, exposure to air pollutants may lead to auto-
nomic imbalance by promoting systemic inflammation, which can upregulate SNS activity
(Andersson & Tracey, 2012) or by altering the microbiome and the gut-brain axis (Brook &
Rajagopalan, 2021). Further, a recent meta-analysis found that air pollution was associated
with an increased risk of childhood obesity (Parasin et al., 2021), which is associated with
reduced cardiac indices of PNS activity (Eyre et al., 2014) and can potentiate inflammation
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(Hotamisligil, 2006). Importantly, the immune system, the autonomic nervous system, the
gut microbiome, and adiposity, are all theorized to be tightly interconnected through bidi-
rectional pathways of influence (Dantzer et al., 2018). Thus, the effects of air pollution on
each of these systems may be amplified as they influence one another.

A complete theoretical model for how air pollution may affect the autonomic nervous
system (ANS) is still lacking. However, increasing evidence is linking air pollution expo-
sure to individual differences in autonomic activity. Several studies have documented
negative associations between exposure to ambient pollutants and resting parasympa-
thetic modulation of cardiac activity, as indexed through heart rate variability (HRV). In a
recent meta-analysis of studies of older adults, robust inverse associations were observed
between exposure to PM2.5 and several indices of HRV (Wang et al., 2020; but see also
contrary evidence in Pope et al., 1999). Relatively fewer studies have tested relations
between air pollution and sympathetic activity. In one study, experimental exposure to
diesel exhaust pollution led to increased sympathetic activity, as indexed through periph-
eral muscle sympathetic nerve activity, in adult males (Rankin et al., 2021). One study of
children ages 9–11 years observed positive, though non-significant, associations between
air concentrations of the metal cadmium and sympathetic activity, as indexed through pre-
ejection period (PEP), though no relations were observed between PEP and either lead or
mercury (Hill et al., 2021). Another recent study with a youth sample found no associations
between neighborhood levels of PM2.5 and either parasympathetic or sympathetic activity
at rest, as indexed through HRV and skin conductance level respectively, in 144 adolescents
ages 9.5–15.5 years old (Miller et al., 2019).

Importantly, the parasympathetic and sympathetic branches of the ANS do not always
act in coordination with one another (Berntson et al., 2008). As such, autonomic imbalance
cannot be easily approximated from individual markers of PNS and SNS activity in isola-
tion. Berntson and colleagues developed two basic measures of autonomic space that can
be used to understand the simultaneous influence of both ANS branches: (1) cardiac auto-
nomic balance (CAB) and (2) cardiac autonomic regulation (CAR; Berntson et al., 2008).
CAB is a measure of the relative influence of the PNS and SNS on heart activity, with larger
values reflecting greater parasympathetic and less sympathetic influence. CAR is a mea-
sure of the combined influence of PNS and SNS over heart activity, with larger CAR values
indicating greater overall autonomic regulation of heart activity. In adults, both of these
measures have been linked to health outcomes: lower CAB was associated with concurrent
diabetes, and lower CAR was associated with a history of a heart attack (Berntson et al.,
2008). The only study we are aware of to test relations between air pollution and a measure
of autonomic space found no significant associations between air pollution and autonomic
imbalance at rest but did find that higher neighborhood PM2.5 levels were associated with
greater reductions in autonomic balance during an acute stressor (Miller et al., 2019).

In sum, theoretical models propose autonomic imbalance as a potential biological medi-
ator of the link between air pollution and health. However, the literature has been almost
entirely limited to the use of PNS and SNS measures in isolation from one another with
a predominant focus on the PNS. In addition, very few studies have investigated links
between air pollution and ANS functioning in youth samples.

1.4 Present study

In the present study, we examined the association between air pollution, indexed by PM2.5,
and serum measures of peripheral inflammation and autonomic nervous system physiol-
ogy in children. Additionally, we aimed to examine the extent to which these associations
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are independent of the effects of family income, child age, sex, and body mass index (BMI).
Families’ addresses were recorded and used to obtain measures of air pollution for their
neighborhood on the day of their laboratory visit, using records from the Environmen-
tal Protection Agency. Blood samples were collected from participants after arrival to the
research laboratory and serum was assayed for four cytokines: IL-6, interleukin-8 (IL-8),
IL-10, and TNFα. ANS data was collected during a resting baseline period and included the
measures of respiratory sinus arrhythmia (RSA), pre-ejection period (PEP), CAR, and CAB.
The goal of this study was to examine biomarkers that may explain links between air pol-
lution and children’s health. Specifically, we examined peripheral inflammation and ANS
physiology as possible correlates of exposure to air pollution in children.

2 METHODS

2.1 Participants

The study involved 130 participants who lived in the Greater Sacramento area for which air
pollution data was available. Of these, 122 participants had ANS data (n = 8 participants
were missing PEP or RSA data due to: excessive, uncleanable noise (n = 4), ECG technical
malfunction (n = 3), or missing data file (n = 1)). Of the 130 participants with air pollu-
tion data, 100 participants provided a blood sample. Missing blood samples were due to
child refusal (n = 12), phlebotomist unavailability (n = 17), and insufficient blood (n = 1).
Therefore, 100 participants have both inflammation and air pollution data.

Demographics for the 122 participants with ANS data were as follows: children were 9–11
years old (M = 9.91, SD = .56); 56 participants identified as female (46%) and 66 iden-
tified as male (54%). Regarding race/ethnicity, 53.2% of participants identified as White
(Non-Hispanic), 26.2% identified as biracial or multiracial (or multiethnic), 12.3% iden-
tified as White-Hispanic, 5% identified as Hispanic/Latinx, 2.5% identified as Asian, .8%
identified as Native American/Alaska Native. Median household income was $125,500 (SD
= 56,000). Median income adjusted for family size was $31,250 (SD = 18,150). The major-
ity of participating parents (43.22%) had a 4-year college degree, .84% had less than a
high school diploma, 12.71% had completed high school, 12.71% completed some college
or had a 2-year college degree, 21.20% had a graduate degree, and 9.32% had a doctoral
degree.

Demographics for the 100 participants with inflammation data were as follows: partic-
ipants were 9–11 years old (M = 9.91 years old, SD = .57); 43% identified as female and
57% identified as male. Regarding race/ethnicity, 50% of participants identified as White
(Non-Hispanic), 28% were biracial or multiracial (or multiethnic), 12% identified as White-
Hispanic, 4% identified as Asian, 3% identified as Hispanic/Latinx, 1% identified as Native
American/Alaska Native, and 1% identified as Black/African American; (n = 1 was miss-
ing race data). Median household income was $125,000 (SD = 58,000). Median income
adjusted for family size was $31,250 (SD = 20,500). The majority of participating parents
had a 4-year college degree (42%), 1% had less than a high school diploma, 13% had com-
pleted high school, 14% had completed some college of had a 2-year college degree, 23%
had a graduate degree, and 7% had a doctoral degree.

Participants were screened for eligibility via a phone interview with a parent. Participant
exclusion criteria included having a chronic health condition, developmental disorder, a
speech or language disorder that would prohibit study activities, or a current psychotropic
or steroid medication regimen. In addition, if participants had been ill in the past two
weeks, study visits were scheduled two weeks after their child’s symptoms subsided.
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2.2 Procedure & measures

Children arrived at the laboratory with their parent or guardian to participate in a larger
study examining the social buffering of stress and psychobiological functioning in children
(Alen et al., 2020; Parenteau et al., 2020). As part of the larger study, participants were asked
to provide two blood samples, one at baseline and the second sample later in the study
session (100 min after undergoing a social stressor or control condition, Parenteau et al.,
2020). The study data were collected between August 2017 and September 2019. Air pollu-
tion has not been previously analyzed in any publications from this study. For the current
study, only the baseline blood sample was used in analyses to maximize sample size. Par-
ents and children completed questionnaires prior to and following the first blood sample.
Height and weight of the children were recorded in the laboratory using a mechanical beam
scale and used to compute BMI.

2.3 Blood sample collection: cytokine measures

Baseline blood samples were collected from participants 30 min after arrival to the research
laboratory and serum was assayed for four cytokines, IL-6, IL-8, IL-10, and TNFɑ. The
first blood draw occurred after arrival at the laboratory to allow children to acclimate to
the novel environment, before administration of the experimental study protocol (greater
detail can be found in Alen et al., 2020 and Parenteau et al., 2020). Blood draws were
performed by trained and certified phlebotomists with previous experience in pediatric
samples. Further detail regarding blood draws can be found in Alen et al., 2020.

Cytokine assays were conducted in the Foundations of Health Research Center at North-
western University using the following procedure: serum aliquots were thawed, then
they were assayed in triplicate for the following cytokines: IL-6, IL-8, IL-10, and TNFɑ.
The assays were performed with a custom four-plex assay on the Simple-Plex Platform
(Protein Simple, San Jose, CA). This integrated system conducts automated fluorescence
immunoassays using disposable microfluidic cartridges. It yields data with high levels of
accuracy and reproducibility (Aldo et al., 2016). In the present study, mean intra-assay
coefficients of variability for triplicate runs were: 4.89% for IL-6, 4.70% for TNFɑ, 3.41%
for IL-10, and 2.33% for IL-8. Mean inter-assay coefficients of variability were: 6.36% for
IL-6, 5.84% for TNFɑ, 7.01% for IL-10, and 8.53% for IL-8.

Outliers (defined as 3 SD above or below the mean) in IL-6, IL-8, and IL-10 were Win-
sorized to the closest value within 3 SD of the mean existing in the data. This included
1 outlier value for IL-6, 2 outliers for IL-8, and three outliers for IL-10. TNFɑ did not
exhibit any outliers and therefore did not need to be Winsorized. Consistent with com-
mon practice, variables were then natural log-transformed to ensure a normal distribution.
We log-transformed TNFɑ to be consistent with the other cytokine analyses. Across all
analyses, results were consistent when using untransformed (not log-transformed) inflam-
matory markers and when Winsorized to 4 SD rather than 3 SD from the mean (log or
untransformed).

2.4 Autonomic nervous system (ANS) physiology data collection

2.4.1 Respiratory sinus arrhythmia

Respiratory sinus arrhythmia (RSA) was used as a marker of parasympathetic nervous sys-
tem (PNS) modulation of cardiac activity (Laborde et al., 2017). RSA was collected with a
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MindWare ambulatory electrocardiogram (ECG; MindWare, Westerville, OH), using three
silver electrodes attached to the child’s chest in Einthoven’s triangle configuration. RSA
data were collected during a resting 5-min baseline period, as part of a larger ECG data
collection procedure (Alen et al., 2020, 2022). The current analysis focused on the base-
line period, during which children were in a seated position on a comfortable couch in
the company of a parent or caregiver. Participants were instructed to attempt to relax,
refrain from speaking to their parent, and not engage in any activity for the 5-min duration.
Interbeat Interval data were calculated using an automated algorithm in the MindWare
Biolab acquisition software. A high-frequency band pass filter set at 0.23–0.50 Hz was used
to correspond to the average breathing rate of this age group (Shader et al., 2018). Sam-
pling rate was set at 500 Hz. R-peaks were inspected and cleaned for artifacts by trained
researchers using MindWare Heart Rate Variability software (version 3.1.5). For further
details regarding the RSA data processing, please see (Alen et al., 2020, 2022). RSA dur-
ing the individual 60-s epochs were then averaged together, producing a mean resting RSA
value.

2.4.2 Pre-ejection period

Pre-ejection period (PEP) was used as a marker of sympathetic nervous system (SNS)
activity, where shorter PEP reflects greater SNS modulation of cardiac activity (Berntson
et al., 2004). We obtained PEP from cardiac impedance data using a MindWare ambulatory
device (MindWare, Westerville, OH). We attached four silver electrodes with a 7% chloride
wet gel to the child’s back and chest in the standard configuration (Sherwood et al., 1990),
including two on the back and two on the chest. For further details about the impedance
data, see (Alen et al., 2020). The current analysis focused on a 5-min resting baseline mea-
sure of PEP. In a robustness check, results were identical in direction and significance when
including or when excluding five participants with usable yet noisy data.

2.4.3 Cardiac autonomic balance and regulation

Cardiac autonomic balance (CAB) and cardiac autonomic regulation (CAR) were calcu-
lated as the relative contribution (difference) of PNS to SNS modulation of cardiovascular
activity, and the combined contribution of PNS and SNS modulation of cardiovascular
activity, respectively, using formulas from Berntson et al. (2008). RSA reflects parasympa-
thetic modulation of cardiovascular activity whereas PEP reflects sympathetic modulation
of cardiovascular activity. Because the two indices were scaled differently, we z-scored the
values (zRSA and zPEP). CAB was calculated as: CAB = zRSA – (–zPEP), and CAR was calcu-
lated as: CAR = zRSA + (–zPEP), as previously recommended by Berntson et al. (2008). Due
to missingness in RSA and PEP, as described above, CAB and CAR values were available for
n = 122 participants who also had air pollution data available.

2.5 Air pollution variables

To obtain air pollution values, we used the Environmental Protection Agency (EPA)’s Air
Quality System Data Mart database which hosts various measures of air quality in multiple
cities across the United States for each day of the year. Specifically, we used pre-generated
data files maintained by the EPA which have daily air quality summary information from
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each outdoor monitor in the country. Data can be downloaded from: https://aqs.epa.gov/
aqsweb/airdata/download_files.html. Files were downloaded for the years the study was
conducted (2017–2019). The EPA database included air quality measures from two types
of monitors: devices using the Federal Reference Method (FRM), which have undergone
rigorous testing and analysis, and devices using the Federal Equivalent Method (FEM/non-
FRM), which met compliance for the National Ambient Air Quality Standards (NAAQS;
Hall et al., 2014). For the present analyses, FRM monitor values were used because FRM
monitors were closer in distance to participants’ homes (M = 6.72 miles, SD = 4.36) than
non-FRM monitors (M = 7.98 miles, SD = 8.34).

The EPA files contain the following variables of interest: arithmetic mean (the average
concentration of PM2.5) and daily air quality index (AQI). In order to determine which EPA
monitors were closest to a participant’s current residential address, the EPA ArcGIS map
application was used (https://epa.maps.arcgis.com/apps/webappviewer/index.html). For
each participant session date, we retrieved the daily AQI and average PM2.5 concentration
for the monitor in the closest available location to the family’s current place of residence.
Monthly PM2.5 was calculated by averaging the PM2.5 levels for the preceding 30 days.

AQI is a measure of daily air quality calculated from levels of ground-level ozone, partic-
ulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The higher the AQI,
the more health effects people may experience (AirNow.gov, U.S. EPA, 2016). AQI is a unit-
less summary value of six different criteria air pollutants. One of these criteria pollutants
is PM2.5, emitted from power plants, industrial processes, vehicle tailpipes, wood stoves,
and wildfires (AirNow.gov, U.S. EPA, 2016). PM2.5 is an important indicator of air pollution
to understand when certain air conditions are hazardous for health. The smaller the par-
ticles, the deeper the pollutants can move into the lungs, with effects being more serious
especially in children or elderly populations (Oehha.ca.gov, CA OEHHA, 2021).

2.5.1 Daily PM2.5

Daily PM2.5 was the “daily arithmetic mean” for the monitor closest to participants’ home
address, on the day the participant visited the laboratory. In cases when PM2.5 was not
available for that day, values from the previous day(s) were used. Thirty participants’ values
are from the day prior to the study visit, with 21 participants’ values being from 2 to 5 days
prior to the study visit. Daily PM2.5 values were Winsorized to 3 SD above the mean, with
1 outlier (149.9) being Winsorized to the highest value within 3 SD, 33.9. Note: this partici-
pant had a session during the Camp Fire in November 2018 (approximately 100 miles from
the laboratory). We Winsorized instead of excluding this data point because the increased
PM2.5 for this participant reflects a true increase in air pollution. Compared to state aver-
ages, the sample’s mean daily PM2.5 (14.42) was not significantly different than the state
of California’s mean in 2017 (10.33; p = .12). However, the sample mean daily PM2.5 (9.27)
was less than the state average (11.39; p = .001) in 2018 and 2019 (sample = 5.13, state =
7.74; p= .02). Compared to national averages, the sample’s 2017 mean daily PM2.5 was sig-
nificantly higher than the national average (8.06; p = .03). In 2018, the sample’s mean daily
PM2.5 was not significantly different than the national average, and was significantly lower
than the national average in 2019 (sample = 5.13, national = 7.63; p = .02).

2.5.2 Monthly PM2.5

Monthly concentrations of PM2.5 were calculated from the 30 days prior to the date of
data collection. For example, if a participant visited the laboratory on February 12, the

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://epa.maps.arcgis.com/apps/webappviewer/index.html
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arithmetic means of PM2.5 were averaged between January 12 and February 12 to arrive
at an average value of PM2.5 exposure in the month prior to study participation. Monthly
PM2.5 values were Winsorized to 3 SD from the mean, resulting in three values being
Winsorized to the closest value within 3 SD from the mean (24.49).

2.5.3 Wildfire season

As noted, a participant with a high PM2.5 value participated in the research study dur-
ing the Camp Fire (November 2018). This prompted us to more closely examine whether
nearby wildfires may impact levels of PM2.5 in the study sample. We created a binary
variable coded 0 or 1, with 1 representing a wildfire month (October 2017; July, August,
November 2018; September 2019). In total, 27 (out of 122) participants came into the lab
during wildfire months. The majority of these participants (n= 21) came to the lab in July or
August 2018 while the Mendocino Complex Fire was active, approximately 100 miles from
the laboratory. Wildfire months showed a trend towards having higher levels of monthly
PM2.5 than non-wildfire months (M wildfire = 10.9, M non-wildfire = 8.9, t(40) = 1.83, p =

.075), and wildfire month was not related to differences in mean daily PM2.5 (t(32)= 1.41, p
= .17). Results were similar in the sub-sample of participants (n = 100) with inflammation
data.

2.6 Data analysis plan

Statistical analyses were run in RStudio version 1.3.959, running R version 4.0.0 (R Core
Team, 2020; RStudio Team, 2020). First, bivariate Pearson correlations were calculated
between the main study variables. The main analyses involve individual linear regressions
in which inflammation and ANS physiology were regressed onto air pollution, unadjusted
for covariates. Next, multiple regression analyses were conducted to include covariates in
each model (age, sex, BMI, and income). Sensitivity analyses were conducted to determine
whether there were differences in findings if AQI was used as a predictor instead of PM2.5.

3 RESULTS

3.1 Bivariate correlations

3.1.1 Air pollution and inflammation

Pearson correlations between study variables are reported in Table 1. IL-6 was significantly
positively correlated with daily PM2.5, r(98) = .26, p = .009, and daily AQI, r(92) = .27, p =

.009, but was not significantly correlated with monthly PM2.5, r(97) = .17, p = .088. IL-10
and TNFɑ were not significantly correlated with measures of air pollution (p’s > .43). IL-8
was significantly negatively correlated with monthly PM2.5, r(97)=−.23, p= .023. However,
IL-8 was not significantly correlated with daily PM2.5 or AQI (p’s > .24).

3.1.2 Air pollution and autonomic nervous system

CAR and CAB
CAR was significantly negatively correlated with daily PM2.5, r(120) = −.29, p = .001, daily
AQI, r(110) = −.27, p = .004, and monthly PM2.5, r(120) = −.23, p = .01. CAB was not
correlated with measures of air pollution (p’s > .18).



PARENTEAU et al. 11

T
A

B
L

E
1

M
ea

n
s,

St
an

d
ar

d
D

ev
ia

ti
o

n
s,

an
d

Pe
ar

so
n

C
o

rr
el

at
io

n
s

Va
ri

ab
le

M
SD

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1.
D

ai
ly

P
M

2.
5

9.
00

6.
36

2.
D

ai
ly

A
Q

I
36

.1
8

19
.6

0
.9

8*
*

3.
M

o
n

th
ly

P
M

2.
5

9.
35

4.
90

.5
6*

*
.5

6*
*

4.
ln

IL
-6

0.
08

0.
55

.2
6*

*
.2

7*
*

.1
7

5.
ln

IL
-8

1.
91

0.
27

−
.1

2
−

.1
0

−
.2

3*
−

.0
3

6.
ln

IL
-1

0
0.

80
0.

32
.0

1
−

.0
1

−
.0

5
.2

2*
.0

8

7.
ln

T
N

F
α

1.
79

0.
22

−
.0

6
−

.0
8

−
.0

1
.1

3
.0

8
.3

8*
*

8.
C

A
R

−
0.

03
1.

37
−

.2
9*

*
−

.2
7*

*
−

.2
3*

−
.0

2
.1

0
−

.0
3

−
.0

9

9.
C

A
B

0.
06

1.
44

.1
2

.1
0

.0
4

.0
7

−
.0

3
.2

1*
.2

0
−

.0
3

10
.R

SA
6.

34
1.

21
−

.1
1

−
.1

2
−

.1
3

.0
4

.0
8

.1
2

.0
7

.6
8*

*
.7

1*
*

11
.P

E
P

80
.2

3
10

.1
4

.2
9*

*
.2

7*
*

.1
8*

.0
7

−
.0

9
.1

7
.2

0
−

.7
0*

*
.7

3*
*

.0
4

12
.S

ex
0.

54
0.

50
−

.0
8

−
.1

1
.0

1
−

.0
0

−
.0

6
.0

7
.1

4
.1

2
.0

5
.1

2
−

.0
5

12
.A

ge
9.

91
0.

56
.1

0
.1

2
−

.0
2

.0
1

.0
9

.0
5

−
.0

2
.0

4
.0

9
−

.0
3

−
.0

1

14
.A

n
n

u
al

In
co

m
e

($
)

12
56

08
56

16
6

.1
1

.1
3

.1
3

.1
2

.1
7

−
.1

5
−

.1
3

.0
2

−
.0

5
−

.0
3

−
.0

5
−

.0
8

−
.0

1

15
.R

ac
e

0.
34

0.
48

−
.0

1
−

.0
4

.0
5

−
.0

8
−

.0
4

.0
1

.1
1

−
.2

7*
*

.0
4

−
.1

6
.2

1*
−

.2
3*

*
.0

5
−

.3
2*

*

16
.B

M
I

17
.6

3
2.

83
−

.0
2

−
.0

6
.0

2
.3

2*
*

.0
6

.1
5

−
.0

1
−

.1
4

.0
9

−
.0

3
.0

9
.1

6
−

.0
1

.1
1

−
.0

3
.0

7

N
ot

e.
P

M
2.

5
=

p
ar

ti
cu

la
te

m
at

te
r,

A
Q

I
=

A
ir

Q
u

al
it

y
In

d
ex

,l
n

IL
-6
=

lo
g-

tr
an

sf
o

rm
ed

in
te

rl
eu

ki
n

-6
,l

n
IL

-8
=

lo
g-

tr
an

sf
o

rm
ed

in
te

rl
eu

ki
n

-8
,l

n
IL

-1
0
=

lo
g-

tr
an

sf
o

rm
ed

in
te

rl
eu

ki
n

-1
0,

ln
T

N
F
α
=

lo
g-

tr
an

sf
o

rm
ed

tu
m

o
r

n
ec

ro
si

s
fa

ct
o

r
al

p
h

a,
C

A
R
=

ca
rd

ia
c

au
to

n
o

m
ic

re
gu

la
ti

o
n

,C
A

B
=

ca
rd

ia
c

au
to

n
o

m
ic

b
al

an
ce

,R
SA

=
re

sp
ir

at
o

ry
si

n
u

s
ar

rh
yt

h
m

ia
,P

E
P
=

p
re

-e
je

ct
io

n
p

er
io

d
,B

M
I=

b
o

d
y

m
as

s
in

d
ex

.S
ex

w
as

co
d

ed
as

a
b

in
ar

y
va

ri
ab

le
,w

it
h

fe
m

al
e
=

0
an

d
m

al
e
=

1.
R

ac
e

w
as

co
d

ed
as

a
b

in
ar

y
va

ri
ab

le
,w

it
h

w
h

it
e

co
d

ed
as

0
an

d
ra

ce
s

o
th

er
th

an
w

h
it

e
co

d
ed

as
1.

C
o

rr
el

at
io

n
s

ar
e

re
p

o
rt

ed
o

n
a

sa
m

p
le

si
ze

o
f1

22
u

n
le

ss
th

ey
in

vo
lv

e
in

fl
am

m
at

io
n

va
ri

ab
le

s,
in

w
h

ic
h

ca
se

n
=

10
0.

*
p
<

.0
5.

**
p
<

.0
1



12 PARENTEAU et al.

F I G U R E 1 Associations between air pollution (PM2.5) and peripheral inflammation. This figure illustrates
the associations between PM2.5 and IL-6 (left) and IL-8 (right). Regression lines are in black, with the gray
shaded area representing the 95% confidence interval.

PEP and RSA
In an exploratory analysis, longer PEP was correlated with higher daily PM2.5, r(120) = .29,
p = .001, and monthly PM2.5, r(120) = .18, p = .044. RSA was not correlated with daily or
monthly PM2.5 (p’s > .14).

Of note, daily PM2.5 and daily AQI were highly correlated (due to PM2.5 contributing to
AQI), r(110) = .98, p < .0001. For the remaining analyses, measures of PM2.5 were used, as
these quantifiable concentrations have been strongly linked to health outcomes. Sensitivity
analyses were conducted to determine if any differences emerge when using AQI as the air
pollution metric. In addition, monthly PM2.5 was significantly correlated with daily PM2.5,
r(97) = .53, p < .0001, and daily AQI, r(92) = .53, p < .0001.

3.1.3 Monitor distance

To examine if there was any spatial variability in the PM2.5 concentrations in our sample,
monitor distance from a participant’s home was considered. Monitor distance was cal-
culated using the point-to-point distance between a participant’s home address and the
nearest FRM monitor address. Monitor distance from the home was not correlated with
daily PM2.5, r(120) = −.12, p = .18, or monthly PM2.5, r(120) = −.01, p = .89. Therefore,
levels of PM2.5 did not differ on average for participants who lived closer or further away
from a monitor.

3.2 Regression analyses

3.2.1 Air pollution and peripheral inflammation

To further examine the significant positive association between air pollution (daily PM2.5)
and IL-6 (β= .26, p = .009), a linear regression was conducted, which explained 6.8% of the
variance in IL-6 (R2

= .068). This model is illustrated in Figure 1. To control for covariates, a
multiple regression model including age, sex, family income, and BMI was conducted. The
association remained significant when adjusting for these covariates (β = .27, p = .005). In
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F I G U R E 2 Associations between air pollution (PM2.5) and cardiac autonomic regulation (CAR). This figure
illustrates the associations between PM2.5 and CAR. Regression lines are in black, with the gray shaded area
representing the 95% confidence interval.

the model, BMI explained 10.6% of the variance in IL-6; PM2.5 explained 6.85% of the vari-
ance in IL-6, independently of BMI and the other covariates. Overall, this model explained
19% of the variance in IL-6 (R2

= .189).
To further examine the significant negative association between monthly air pollution

(monthly PM2.5) and IL-8 (β = −.23, p = .02), a linear regression was conducted, which
explained 5% of the variance in IL-8 (R2

= .051). A multiple regression including covari-
ates was conducted, and monthly PM2.5 was significantly associated with IL-8 (β = −.23,
p = .005) with the inclusion of covariates in the model. Daily PM2.5 and monthly PM2.5
were not significantly associated with IL-10 or TNFɑ in models with or without covariates
(p’s > .52). Sensitivity analyses showed that the associations with inflammation (IL-6, IL-8)
and air pollution were consistent when using daily PM2.5 or daily AQI as a measure of air
pollution. All inflammation regression analyses with daily values of PM2.5 can be found in
Table 2 and regressions with monthly values are in Table 3.

3.2.2 Air pollution and autonomic nervous system

CAR and CAB
To examine the negative association between daily air pollution values and CAR, a linear
regression was conducted for CAR and daily PM2.5 (β = −.29, p = .001), explaining 8.5%
of the variance in CAR (R2

= .085). This model is illustrated in Figure 2. To control for
covariates, a multiple regression model including age, sex, family income, and BMI was
conducted, and explained 13.6% of the variance in CAR (R2

= .136). In the model, daily
PM2.5 was a significant predictor of CAR (β = −.30, p = .001), and explained 7.8% of the
variance in CAR. None of the covariates significantly predicted CAR. Next, a linear regres-
sion model was conducted to examine the association between CAR and monthly PM2.5
(β=−.23, p = .01), which explained 5% of the variance in CAR (R2

= .05). A multiple regres-
sion model including covariates was conducted, explaining 10% of the variance in CAR (R2

= .096). The association between CAR and PM2.5 remained significant when adjusting for
covariates (β=−.22, p = .02). In the covariate model, PM2.5 explained 4.6% of the variance
in CAR. Daily PM2.5 and monthly PM2.5 were not significantly associated with CAB. Sen-
sitivity analyses showed that the associations between air pollution and CAR or CAB were
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F I G U R E 3 Associations between air pollution (PM2.5) and pre-ejection period (PEP). This figure illustrates
the associations between PM2.5 and PEP. Regression lines are in black, with the gray shaded area representing
the 95% confidence interval.

consistent when using daily PM2.5 or daily AQI as measures of air pollution. Daily PM2.5
and CAR and CAB regression analyses can be found in Table 4, and analyses using monthly
PM2.5 can be found in Table 5.

PEP and RSA
To examine the positive association between daily air pollution and longer PEP (β = .29,
p = .001), a linear regression was conducted, which explained 8.3% of the variance in PEP
(R2

= .083). This model is illustrated in Figure 3. A multiple regression model with covari-
ates was also conducted, and the association remained significant (β = .30, p = .001). Daily
PM2.5 explained 7.68% of the variance in PEP, and BMI explained 3% of variance in PEP.
Next, a linear regression model was conducted to examine the association between PEP
and monthly PM2.5 (β= .18, p = .044), and explained 3% of the variance in PEP (R2

= .033).
In a multiple regression model with covariates, monthly PM2.5 no longer predicted PEP
at the .05 level (β = .18, p = .056). Daily PM2.5 and monthly PM2.5 were not significantly
associated with RSA (p’s > .14). Sensitivity analyses showed that the associations between
air pollution and PEP or RSA were consistent when using daily PM2.5 or AQI as a predictor.

4 DISCUSSION

In the present study, neighborhood levels of air pollution (PM2.5) were differentially
associated with indices of children’s peripheral inflammation (IL-6, IL-8) and autonomic
physiology (CAR and PEP). Specifically, levels of daily PM2.5 on the day of (or prior to)
coming to the laboratory were significantly associated with higher levels of IL-6 in children
ages 9–11 years old. Conversely, higher monthly levels of PM2.5 (in the month leading up to
the laboratory visit) were associated with lower levels of IL-8. Analyses revealed that IL-10
and TNFα were not significantly associated with daily or monthly levels of PM2.5.

Our findings are in line with previous research, which indicates that levels of air
pollution are associated with elevations in markers of inflammation in children (Calderón-
Garcidueñas et al., 2008, 2013; Li et al., 2019; Gruzieva et al., 2017). The current study
adds to this growing evidence base and identifies IL-6 as an inflammatory marker that is
potentially more sensitive to air pollution effects compared to IL-10 and TNFα.
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Of note, we found that levels of air pollution were associated with higher levels of IL-6
but lower levels of IL-8 in participants. This is somewhat consistent with studies con-
ducted at the University of California-Davis National Primate Research Center, which
found that monkeys with early life exposure to PM2.5 (born 3 months prior to a wild-
fire) had significantly higher expression of IL-6 as adults (8 years of age) compared to
control monkeys born the following year. Interestingly, the offspring (1–2 years of age) of
early-exposed mothers exhibited significantly reduced levels of IL-8 compared to control
offspring (Miller, 2019). However, mothers produced increased levels of both IL-6 and IL-8
in response to lipopolysaccharide (LPS), while their offspring again displayed reduced pro-
duction of IL-8 (but greater production of IL-6). Thus, exposed mothers had higher levels
of both IL-6 and IL-8, while their offspring had higher levels of IL-6 and lower levels of IL-8,
suggesting differential intergenerational effects (Miller, 2019). Our findings are in contrast
to a study conducted with 10-year-old children in Taiwan (Chen et al., 2012), which found
a positive association between PM2.5 and IL-8 levels, although these were measured in the
nasal lavage on the day of exposure. Effects of air pollution may differ depending on the
method of measurement and the presence of developmental effects over time.

These findings are important because exposure to pollutants released during wildfires
has been related to numerous negative health outcomes in children, including asthma and
decreased lung function, as well as neurodevelopmental outcomes like attention deficit
hyperactivity disorder, autism, and deficits in school performance and memory (Holm
et al., 2021; Oliveira et al., 2019; Suades-González et al., 2015). Mechanistically, it is thought
that wildfire smoke impacts respiratory systems via direct inhalation, which leads to local
oxidative stress, inflammation, and cell toxicity, potentially resulting in systemic effects
(Adetona et al., 2016). Notably, particulate matter is the primary indicator of these adverse
effects of wildfire pollution (Naeher et al., 2007). In addition, early life exposure to wildfire
smoke and pollution may “program” structural, metabolic, and cellular signaling mecha-
nisms that may result in lifelong metabolic impacts, such as obesity (Holm et al., 2021).
This may explain past findings that greater exposure in utero to chemicals that occur in
wildfire air pollution (polycyclic aromatic hydrocarbons; PAHs) is associated with higher
body weight in children (Rundle et al., 2012).

We also found that daily and monthly levels of PM2.5 were associated with lower cardiac
autonomic regulation (CAR) in our study sample. That is, children who experienced higher
levels of air pollution in the day or month prior to the laboratory visit exhibited lower CAR
during a baseline resting period in the laboratory. CAR is a measure that reflects the com-
bined contribution of the PNS and SNS in modulating cardiovascular activity (Berntson
et al., 2008). Greater values indicate greater overall autonomic regulation of heart activity.
Previous work has suggested that greater autonomic control of the heart may be a positive
factor in reducing risk for adverse cardiac health outcomes (Berntson et al., 2008; Thayer &
Sternberg, 2006).

The literature on air pollution and ANS physiology, and in particular cardiac autonomic
regulation (CAR) or balance (CAB), is rather limited. To our knowledge, only one previ-
ous study in children examined neighborhood PM2.5 in association with parasympathetic
and sympathetic nervous system activity (Miller et al., 2019). While the study did not find
any significant associations between PNS or SNS activity at rest and PM2.5, adolescents
in neighborhoods with higher PM2.5 demonstrated higher autonomic reactivity to stress.
Specifically, they exhibited greater reductions in autonomic balance during an acute stres-
sor, indexed by heart rate variability and skin conductance (Miller et al., 2019). The current
study found that, at rest, participants who lived in areas with greater PM2.5 concentrations
exhibited lower CAR, which has been found to be indicative of later heart health problems
(Berntson et al., 2008).
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Results from our exploratory analysis of PEP and RSA suggest that the association with
CAR may be driven by a negative relation between air pollution and sympathetic activity,
as air pollution was not associated with resting parasympathetic activity in our sample.
The lack of association between PM2.5 and RSA in our pediatric sample is inconsistent
with findings from a recent meta-analysis of studies with older adults by Wang et al.
(2020), which found that both short-term and long-term PM2.5 exposures were associ-
ated with decreased indices of HRV. However, our results are consistent with a study of 18
adults, which found that experimental exposure to air pollution did not impact measures
of parasympathetic heart rate control, although it increased levels of circulating leucocytes
(Heusser et al., 2019).

Greater exposure to PM2.5 was correlated with longer PEP, reflecting lower sympathetic
influence on the heart (Berntson et al., 2004). This surprising finding is in contrast to the-
oretical models, based on evidence in adults, that air pollution can lead to upregulation of
SNS activity and is associated with downregulation of PNS activity (Brook & Rajagopalan,
2021; Wang et al., 2020). The literature in youth samples is very limited. We are only aware
of two recent studies that tested associations between pollutant exposure and resting ANS
activity, and both studies found no significant associations (Hill et al., 2021; Miller et al.,
2019). However, differences in results may also be due to the use of different methodolo-
gies, as SNS activity was measured via skin conductance by Miller and colleagues. In a study
with rats, experimental exposure to diesel exhaust led to a reduction in sympathetic activ-
ity as indexed by prolonged PEP, consistent with our findings (Carll et al., 2013). Given the
limited and mixed evidence so far, additional research in youth samples is needed before
drawing strong conclusions. However, these findings suggest that air pollution may be
differentially associated with resting ANS activity during childhood and adolescence, as
compared to adulthood.

Of note, CAR has been significantly associated with general health indices and history of
heart attacks (Berntson et al., 2008). Further, the maturation of cardiac autonomic control
may be disrupted by childhood obesity, as indicated by reduced cardiac parasympathetic
activity (Eyre et al., 2014). As mentioned, a recent meta-analysis of eight studies found that
air pollution was associated with increased risk of childhood obesity (Parasin et al., 2021).
Future work should examine the relationships between air pollution, autonomic regula-
tion of the heart, and other cardiometabolic risk factors, to understand the impact of air
pollution on children’s health or risk for obesity.

4.1 Strengths and limitations

The strengths of this study include the focus on children, an under-studied but vulner-
able population; the concurrent measurement of multiple inflammatory markers along
with cardiac autonomic physiology, and robustness of links between air pollution and
these biomarkers after accounting for socioeconomic condition, BMI, and demograph-
ics. The study is not without limitations. First, the cross-sectional design provides useful
preliminary evidence, but limits what we can infer from these associations. Longitudinal
follow-up could shed light on the long-term health and psychological effects of air pol-
lution. Second, inflammatory markers in general circulation should be complemented by
more specific measures of airway inflammation and asthma symptoms in future studies
to gain a more complete understanding of the full effects of air pollution on the body.
Third, the sample size was relatively small and these findings will benefit from replication
with larger samples. The sample size precluded the examination of more complex mod-
els including interaction effects to test the role of moderators, limiting the scope of the
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analysis to main effects. Finally, the magnitude of effects captured in our Northern Cali-
fornia study may not be representative of other geographic regions, thus replicating these
effects with nationally-representative and international samples is an important future
direction.

4.2 Conclusion & future directions

As climate change continues to impact children and families, it is paramount to under-
stand the impact of environmental contaminants such as air pollution on children’s
physiology. By examining daily and monthly levels of PM2.5 in relation to children’s
inflammation and autonomic physiology, this study further demonstrates the immediate
consequences of exposure to air pollution, which may increase risk of future disease.

As discussed by Trentacosta and Mulligan, the future directions for research on envi-
ronmental contaminants are plentiful (2020). The current study adds to the literature on
air pollution exposure and childhood outcomes that may be linked to later life health
problems; however, additional longitudinal work is needed. In addition, the current study
only collected participants’ current address and does not have information about how
early-life air pollution exposure may have been related to children’s current immune or
autonomic functioning. Future research designs should also consider timepoints in devel-
opment in which children may be particularly susceptible to the impacts of air pollution on
health.

Air pollution exposure, as well as the effects of climate change, are an environmental jus-
tice issue. In the United States, PM2.5 pollutants disproportionately affect racial and ethnic
minorities, such that regardless of income level, people of color have higher than average
exposure to PM2.5 (Tessum et al., 2021). While minority race was not correlated with PM2.5
in the current study, future research and subsequent policy changes that seek to mitigate
the effects of air pollution on children should address these disparities in exposure.

A promising future direction would be examining moderators or protective factors that
may mitigate the effects of air pollution on children’s development (Trentacosta & Mulli-
gan, 2020). For example, with respect to the current study, research should examine ways
to promote cardiac autonomic regulation in children as a potential protective factor in
reducing risk of long-term cardiovascular impacts of pollution. Overall, policy changes that
mitigate emissions have been estimated to produce significant improvements in children’s
wellbeing (Larr & Neidell, 2016). Continued developmental research on environmental
contaminants can sound the alarm about the effects of air pollution and inform policy
changes that could promote long-term population health.
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